
django-query-profiler
Release 0.0.1

Jun 08, 2022

Installation and configuration

1 installation 3

2 configuration instructions 5

3 choosing profiler level 9

4 customizing the defaults 11

5 how the profiler works 13

6 running tests 17

7 columns in chrome plugin 19

i

ii

django-query-profiler, Release 0.0.1

Django query profiler is a profiler for Django applications, for helping developers answer the question “My Django
code or page or API is slow, How do I find out why?”

Below are some of the features of the profiler:

1. Shows code paths making N+1 sql calls: Shows the sql with stack_trace which is making N+1 calls, along with
sql count

2. Shows the proposed solution: If the solution to reduce sql is to simply apply a select_related or a
prefetch_related, this is highlighted as a suggestion

3. Shows exact sql duplicates: Count of the queries where (sql, parameters) is exactly the same. This is the kind of
sql where implementing a query cache would help

4. Flame Graph visualisation: Collects all the stack traces together to allow quickly identifying which area(s) of
code is producing the load

5. Command line or chrome plugin: The profiler can be called from command line via context manager, or can be
invoked via a middleware, and output shown in a chrome plugin

6. Super easy to configure in any application: The only changes are in settings.py file and in urls.py file

To get up and running quickly, install django-query-profiler, then read configuration, which describes the steps for
configuring the profiler in your application

Installation and configuration 1

django-query-profiler, Release 0.0.1

2 Installation and configuration

CHAPTER 1

installation

1.1 requirements

This works with any version of django >= 2.0, and running on python >= 3.6

1.2 for usage

Simplest way to get the profiler is to use pip, and installing chrome extension from chrome store:

• Python package:

$ pip install django-query-profiler

You can verify that the application is available on your PYTHONPATH by opening a python interpreter and
entering the following commands:

>>> import django_query_profiler
>>> django_query_profiler.VERSION

• Chrome extension: Download from chrome webstore

Note that the chrome extension works on any chromium based browser. We have tested it on Google Chrome and
Brave Browser

1.3 for development

• clone the git repository for python package from GitHub and run setup.py:

3

https://chrome.google.com/webstore/detail/django-query-profiler/ejdgfhecpkhdnpdmdheacfmknaegicff

django-query-profiler, Release 0.0.1

$ git clone git://github.com/django-query-profiler/django-query-profiler.git
$ <venv activate command>
$ cd django-query-profiler
$ python setup.py test; python setup.py install;

• clone the git repository for chrome plugin and add it to any chromium based browser:

git clone git://github.com/django-query-profiler/django-query-profiler-chrome-
→˓plugin.git
Open chrome://extensions (command works in any chromium based browser)
- check Developer mode,
- click on load unpacked.
- Select the cloned package above

4 Chapter 1. installation

CHAPTER 2

configuration instructions

2.1 as chrome plugin

The only places where we will need to change are the settings.py and urls.py file.

settings.py:

from django_query_profiler.settings import *

INSTALLED_APPS = (
...
'django_query_profiler',
...

)

MIDDLEWARE = (
...
Request and all middleware that come after our middleware, would be profiled

'django_query_profiler.client.middleware.QueryProfilerMiddleware',
...

)

DATABASES = (
...
Adding django_query_profiler as a prefix to your ENGINE setting
Assuming old ENGINE was "django.db.backends.sqlite3", this would be the new one
"ENGINE": "django_query_profiler.django.db.backends.sqlite3",

)

This works for all the databases supported by Django. In all the databases, the ENGINE settings has to be prepended
by django_query_profiler for the profiler to work

In case of mysql/mariadb, the ENGINE setting would look like:

5

django-query-profiler, Release 0.0.1

from "django.db.backends.mysql"
"ENGINE": "django_query_profiler.django.db.backends.mysql",

In case of postgres, the ENGINE setting would look like:

from "django.db.backends.postgresql_psycopg2"
"ENGINE": "django_query_profiler.django.db.backends.postgresql_psycopg2",

In case of oracle, the ENGINE setting would look like:

from "django.db.backends.oracle"
"ENGINE": "django_query_profiler.django.db.backends.oracle",

urls.py:

Add this line to existing urls.py
path('django_query_profiler/', include('django_query_profiler.client.urls'))

See this PR on how to configure this in your application, and how the plugin is going to look like after your configu-
ration

2.2 as chrome plugin without detailed view

We use redis to store the pickled data of detailed view, that gets shown when clicking on the “Details Link” in the
chrome extension. If redis is not available, we would not be able to see the detailed view, but we can still see the
summary view.

In that scenario, the only change would be in the application’s settings.py. We don’t need to add django_query_profiler
to INSTALLED_APPS, and we don’t need to add detailed view url to urls.py

settings.py:

from django_query_profiler.settings import *

MIDDLEWARE = (

(continues on next page)

6 Chapter 2. configuration instructions

https://github.com/django-query-profiler/django-query-profiler-sample-app/pull/1

django-query-profiler, Release 0.0.1

(continued from previous page)

...
Request and all middleware that come after our middleware, would be profiled

'django_query_profiler.client.middleware.QueryProfilerMiddleware',
...

)

DATABASES = (
...
Adding django_query_profiler as a prefix to your ENGINE setting
Assuming old ENGINE was "django.db.backends.sqlite3", this would be the new one
"ENGINE": "django_query_profiler.django.db.backends.sqlite3",

)

See this PR on how to configure this in your application, and how the plugin is going to look like after your configu-
ration

2.3 as context manager

This is helpful if you want to test things out on a command line - it requires only one change to settings.py

settings.py:

from django_query_profiler.settings import *

DATABASES = (
...
Adding django_query_profiler as a prefix to your ENGINE setting
Assuming old ENGINE was "django.db.backends.sqlite3", this would be the new one
"ENGINE": "django_query_profiler.django.db.backends.sqlite3",

)

See this PR on how to configure this in your application,

See this file in the PR to see how to use the context manager And see how easy it is to spot performance issues :-)

2.3. as context manager 7

https://github.com/django-query-profiler/django-query-profiler-sample-app/pull/2
https://github.com/django-query-profiler/django-tip-02/pull/1/files#diff-4adc426e30bc1ad9a8f83ea94a278a51
https://github.com/django-query-profiler/django-tip-02/blob/18785d9e44b5f542ce26f555a4bcf18124f788d0/DJANGO_QUERY_PROFILER.md

django-query-profiler, Release 0.0.1

8 Chapter 2. configuration instructions

CHAPTER 3

choosing profiler level

3.1 Explaining profiling levels

There are two levels of query profiler, and both of them have different capabilities, and different overheads. The idea
to have two different levels is to allow the application developer to choose the right level, based on how much overhead
is acceptable for their API.

Currently, there are two levels of profiling:

1. QUERY_SIGNATURE: This is the mode where we capture the query as well as the stack-trace. The group-
ing unit here is (stack-trace, normalized sql), and that grouping helps us to figure out if there are N+1 code paths.
Django stack-trace helps us find recommendations - like if a particular query can be stopped by applying se-
lect_related/prefetch_related

The main overhead comes from calculating stack-traces whenever a query is executed, and for normalizing sql by
applying a regex. From our experience of using it in production, the overhead is generally to the order of 1 millisecond
per 7 queries

2. QUERY: This is the mode where we just capture queries, and not the stack-trace. The grouping unit here is just
(sql). Because we don’t have access to stack-traces, we don’t know if any code path is N+1 or not. We don’t have any
code recommendation either.

From our experience of using it, the overhead is generally to the order of 1 millisecond per 25 queries

3.2 Configuring profiling levels

Based on the overhead that profiler adds for every query, the profiler level can be configured in the application set-
tings.py file.

1. The default setting is to run the profiler in QUERY_SIGNATURE level. If you want to run the application in QUERY
level, this is how you should configure in your settings.py file:

9

django-query-profiler, Release 0.0.1

from django_query_profiler.settings import *
from django_query_profiler.query_profiler_storage import QueryProfilerLevel

def DJANGO_QUERY_PROFILER_LEVEL_FUNC(request) -> Optional[QueryProfilerLevel]:
return QueryProfilerLevel.QUERY

2. If you want to configure it per request, the profiler provides a hook for changing the profiler type given a request
object

The profiling level of each API is calculated per request, and can be configured easily. See customiz-
ing_defaults on how this can be done

10 Chapter 3. choosing profiler level

CHAPTER 4

customizing the defaults

This doc covers how to change the django-query-profiler settings to suit your needs. The attributes that the profiler
expects are in django_query_profiler/settings.py file

Irrespective of if you are using the chrome plugin, or the context manager, there is one line you would have added to
your application settings.py file, for configuring the profiler:

from django_query_profiler.settings import *

If you want to change any of the defaults, you can import the file, and then define the same parameter again, but with
a different value

Here are some example of customizations that can be done:

• If redis is running on a different port, this is what you would have to do in the application settings.py:

from django_query_profiler.settings import *
DJANGO_QUERY_PROFILER_REDIS_PORT: int = 8080

• If we want to configure the profiler to be run on certain api’s only. The default setting is to run it on all api’s.
The way to change the defaults would be do something in the application settings.py:

from django_query_profiler.settings import *
from django_query_profiler.query_signature import QueryProfilerLevel

def DJANGO_QUERY_PROFILER_LEVEL_FUNC(request):
return QueryProfilerLevel.QUERY_SIGNATURE if request.path_info == '/pizza/order

→˓' else None

• A similar example is if you want the profiler to be run only when the request is coming from internal IPs.
Django request META contains the ipaddress, and that can be used to filter out only internal IP address where
the profiler would be enabled

• If we want to do say, log the query profiled data to a log file. The way to do it would be:

11

https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/settings.py

django-query-profiler, Release 0.0.1

from django_query_profiler.settings import *
from django.http.response import HttpResponseBase
from django.http import HttpRequest
from django_query_profiler.query_profiler_storage import QueryProfiledData

def DJANGO_QUERY_PROFILER_POST_PROCESSOR(
query_profiled_data: QueryProfiledData,
request: HttpRequest,
response: HttpResponseBase) -> None:

logger.info(query_profiled_data)

• If we want to remove a particular module from coming in the stack-trace, that gets shown in the detailed view:

from django_query_profiler.settings import *

DJANGO_QUERY_PROFILER_APP_MODULES_TO_EXCLUDE += ('package1', 'package2')

• An extreme example of customizations - one could write a new chrome plugin &/or your own middleware as
well. All QueryProfilerMiddleware is doing is to call the context manager, and set some headers which the
chrome plugin interprets and append in its table.

– Rolling out your own chrome plugin & the middleware, which calls the context manager is definitely
doable.

– The DJANGO_QUERY_PROFILER_POST_PROCESSOR function is called with the request, response &
QueryProfiledData - before the response is sent back. It can be used to set additional attributes on the
response headers

– Your application can set other attributes on the response, and your chrome plugin can read those attributes

– If it is something others can also use, please consider sending a PR :-)

12 Chapter 4. customizing the defaults

CHAPTER 5

how the profiler works

5.1 Basic Ideas

1. A N+1 query is one which runs the same query (with different params) for the N related objects - one for each
N - in a loop

• The best way to know if a code path is making N+1 calls is to capture the stack trace & the query, and see if the
same stack trace & query combination appears again.

• We can consider a (stack trace, query) as an aggregate, and maintain a map of this aggregate to count

• We should segregate the stack trace into (application, django) stack trace. An application stack trace is useful to
be displayed, while a django stack trace is not

• Can we do anything useful with the django stack trace? Does it give us any useful insights - if not, we should
discard it (Surprise: It does :-))

• Where do we store this data? Maybe a thread-local? Lets call this data collector module

2. For us to capture stack trace & the query, we have to hook into django to call our data collector when a query is
executed

• If we can hook into django to call our data collector when it executes any query, we can also collect other
interesting properties, like exact sql duplicates, row count, and time taken to run a query

• Does Django has hooks for us to execute some function when a query is executed?

3. Once we have the above two pieces figured out, we have to start collecting this data when a request happens,
and stop when the request gets finished, ie. figure out the boundaries of profiling

• A middleware seems like a good boundary, but that would limit us to just requests.

• A context manager seems like a more generic boundary, and a django middleware can then just call the context
manager. This would allow us to use the profiler from command line

4. Once we have this data, where should the data be displayed about the stack trace & the query

• If it was called as part of context manager, user would know what to do with the data

13

django-query-profiler, Release 0.0.1

• If it was called as part of a request, chrome plugin seems like a good place for displaying this data. Middleware
can set the data in the headers, and the chrome plugin should be able to read that, and display it in the plugin

5.2 Implementation details

This part is divided by the package that answers the four question/idea discussed above

5.2.1 1. query_profiler_storage

• github link

• This package has a data_collector module where we define a thread-local which exposes three functions:

– enter_profiler_mode: Just sets the profiler to on state

– exit_profiler_mode: Turns off the profiler, and return the profiled data that has been collected since the
start of enclosing start block

– add_query_profiled_data: If the profiler is on, start collecting data in its thread-local

• We have defined our data models in the __init__.py file. All the bookkeeping code happens in these models, in
the python magic functions like the __add__ ones.

• For capturing the stack trace, and grouping them into (application, django) stack trace, we have stack_tracer
module

• We are trying to use the django stack trace to figure out if the query is happening because of a forward or a reverse
relationship, which helps us to know if this could have been avoided by a select_related/prefetch_related.

This is happening in the django_stack_trace_analyze module. We are trying to analyze django stack trace, and
see if we can find some useful known pattern

5.2.2 2. django

• github link

• To get a hook from django when it executes a query, that part is done in the django module. We are using the
fact that django provides a way for us to pass a DATABASE[ENGINE] in the settings.py file, as a string.

There are many open source projects which use this hook provided by django, to add some features when
connecting to databases:

– django-postgres-readonly

– django-postgrespool

– django-sqlserver

– custom database backends

All the above packages have the same part about the ENGINE setting - the package has a base.py and __init__.py
file. Looks like, this requirement is coming from django code.

• To hook into the django query execution model, all the database in django have a common CursorWrapper
implementation. This cursor is the last point where we have python/django code. After this layer, the code is
handed to the various database drivers

14 Chapter 5. how the profiler works

https://github.com/django-query-profiler/django-query-profiler/tree/master/django_query_profiler/query_profiler_storage
https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/query_profiler_storage/data_collector.py
https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/query_profiler_storage/__init__.py
https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/query_profiler_storage/stack_tracer.py
https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/query_profiler_storage/django_stack_trace_analyze.py
https://github.com/django-query-profiler/django-query-profiler/tree/master/django_query_profiler/django
https://github.com/django-query-profiler/django-query-profiler/tree/master/django_query_profiler/django
https://github.com/opbeat/django-postgres-readonly
https://github.com/heroku-python/django-postgrespool
https://github.com/denisenkom/django-sqlserver
https://simpleisbetterthancomplex.com/media/2016/11/db.pdf
https://github.com/django/django/blob/2.2/django/db/utils.py#L115-L119
https://github.com/django/django/blob/2.2/django/db/backends/utils.py

django-query-profiler, Release 0.0.1

We change the cursorWrapper to our implementation in the module cursor_wrapper_instrumentation.py. We
use a mixin module database_wrapper_mixin.py to do it once for all database, and configure this mixin for each
database

In case you are interested to learn about various layers in django, see this amazing talk by James Bennett. Watch
it even if you don’t use the profiler :-)

5.2.3 3. client

• github link

• In the above two modules, we already have all the machinery for the profiler. The one thing that is remaining is
to set the boundaries of the profiler - by calling the enter_profiler_mode and exit_profiler_mode functions. That
is exactly what the context manager does.

• The middleware module just calls the context manager, and sets the headers which the chrome plugin expects

5.2.4 4. chrome plugin

• github link

• This is a different project in the repo. All it does, is see if the headers in the request have the headers which the
django query profiler sets. If it has, it parses the response, and add it to table in its devtools panel

5.2. Implementation details 15

https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/django/db/backends/cursor_wrapper_instrumentation.py
https://github.com/django-query-profiler/django-query-profiler/blob/master/django_query_profiler/django/db/backends/database_wrapper_mixin.py
https://www.youtube.com/watch?v=tkwZ1jG3XgA
https://github.com/django-query-profiler/django-query-profiler/tree/master/django_query_profiler/client
https://github.com/django-query-profiler/django-query-profiler-chrome-plugin

django-query-profiler, Release 0.0.1

16 Chapter 5. how the profiler works

CHAPTER 6

running tests

Running test is as simple as running this command:

python setup.py test

This would run the tests against a sqlite database

If your application has a mysql/postgresql/oracle test settings, you can pass the settings file and run this to use your
settings file:

DJANGO_SETTINGS_MODULE=<your test settings> python setup.py test

As an example, see tox file to see how we are passing this environment variable to run tests for mysql/postgres/sqlite

If you want to run tests against the full matrix of python version supported and django version supported, for all the
drivers supported by Django, run:

tox

This is how we are also running tests on travisCI - so that all changes to the project are tested for all the above
combinations

17

django-query-profiler, Release 0.0.1

18 Chapter 6. running tests

CHAPTER 7

columns in chrome plugin

There are 15 columns in the chrome plugin table:

• Api name: This is the api name that we see in the network tab in chrome devtools

• Total request time (in ms): This is the total round-trip time of the request. This is also the same as what chrome
network tab shows for that api

• Server request time (in ms): This is the time the request spends on the server - assuming that the django-query-
profiler middleware is the first one in the list.

• Profiler time added (in ms): This is the overhead added by profiler to the request

• Query time (in ms): This is the total time taken by all queries for that request

• Select: Count of select sqls

• Insert: Count of insert sqls

19

django-query-profiler, Release 0.0.1

• Update: Count of update sqls

• Delete: Count of delete sqls

• Transactional sqls: Count of begin/end transaction sqls

• Other sqls: Count of sqls that we were not able to classify as above five. Ideally this should never happen

• DB Rows fetched: Count of database rows that the select queries fetch from database. Note that sqlite does not
return number of rows fetched, so it would show up as ‘-’

• Potential N+1’s: This represents the count of N+1 queries that the profiler found. If this number seems high, the
API is definitely something that should be optimized.

• Exact sql duplicates: This represents the count of queries which had the same (query, param) but was executed
multiple times to the database. If this number is higher, consider doing query caching, or pulling the sql out of
the loop

• Details link: This is the url that would show a detailed view, and the recommendation on how to fix the code
path

20 Chapter 7. columns in chrome plugin

	installation
	configuration instructions
	choosing profiler level
	customizing the defaults
	how the profiler works
	running tests
	columns in chrome plugin

